If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-42n-2=0
a = 1; b = -42; c = -2;
Δ = b2-4ac
Δ = -422-4·1·(-2)
Δ = 1772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1772}=\sqrt{4*443}=\sqrt{4}*\sqrt{443}=2\sqrt{443}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{443}}{2*1}=\frac{42-2\sqrt{443}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{443}}{2*1}=\frac{42+2\sqrt{443}}{2} $
| (1.43+x)/2=1.45 | | 56g=g | | (1.43+x)/2=1.5 | | x95^7=2 | | 10^7^95x=4 | | 10^7^95x=3 | | 70/n=14 | | 2.5x=7,5 | | 10^7^95x=2 | | 10g=g | | 10^7^95=2x | | x=95^19^5 | | X^2-2x/(x+1)=0 | | 35-m=7 | | 7=9x*5^2 | | 7=9*5^2x | | 7=9*x5^2 | | 7=9*5x^2 | | 7x=9*5^2 | | 195^7=3x | | 6x+7=2x=59 | | 195^7=2x | | 140625=19x | | 140000=19x | | 3=7^5x^2 | | 1=19x | | 3=95^7x^2 | | 3=95^7^2x | | 3x=95^7^2 | | x-30=4500-x+150 | | 3=7^95x^2 | | 3=7x^2 |